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A B S T R A C T   

Wildlife-vehicle collision - WVC is a phenomenon that arises from the fragmentation of ecosystems by roads, 
limiting the mobility of individuals and putting at risk the stability of populations by increasing mortality. 
Colombia is not unaware of the problem of the WVC, evidenced in different scientific publications that describe 
the WVC in the roads of the country. Although the rise of artificial intelligence has significant advances in the 
prediction of spatial phenomena in recent years, it has not yet been sufficiently explored by Road Ecology. For 
this reason, this research aimed to develop a methodology to predict the sites of accumulation of WVC in eastern 
Antioquia, Colombia, based on artificial intelligence algorithms, geographic information systems - GIS, and 
multispectral image processing. During the development of this research, it was identified that the features most 
related to the WVC in the study area are: Distance to Forest, Distance to Biological Corridor, Ground Resistance to 
Movement, Cost of Movement, the bands of the Landsat 8 satellite: 9, 10, 11 and the normalized burning index 
(NBRI). Different machine learning algorithms were compared (k-nearest neighbours, support vector machines 
(SVM), random forests (RF), and artificial neural networks). SMOTE and ADASYN balancing techniques were 
applied. The results allowed to identify that the RF algorithm with ADASYN yielded the best performance when 
subjected to spatial-wise cross-validation (AUC-ROC 0.78 ± 0.12), surpassing the results of current state-of-the- 
art. Finally, the methodology was validated through a transfer learning experiment, training the RF-ADASYN 
algorithm with three zones of the eastern Antioquia region and validating on a different section (AUC-ROC =
0.87 ± 0.09), retraining the initial model with 5% of data from the validation database.   

1. Introduction 

Wildlife-vehicle collision - WVC is a phenomenon that is propor-
tional to the roads growth and arises from the fragmentation of eco-
systems, limiting the mobility of individuals and putting at risk the 
stability of populations by increasing mortality (Jaeger, 2015). WVC has 
severe consequences for ecosystems due to the loss of ecosystem services 
such as pest control, population control, seed dispersal, among others 
(Coffin, 2007). This phenomenon also affects road safety: WVC causes 
injuries, costs associated with vehicle repair, and human lives lost. It is 
estimated that approximately 2 million collisions between vehicles and 
large mammals occur in the United States each year, resulting in at least 

29,000 people injured, 200 or more human deaths (van der Ree et al., 
2015a, 2015b), as well as economic losses estimated at $4 billion each 
year (Cramer et al., 2015; van der Ree et al., 2015a, 2015b). An esti-
mated 365 million vertebrates die each year on this country’s roads 
(Davenport and Switalski, 2006). Due to this problem, some authors 
have considered WVC to be one of the main factors contributing to the 
loss of biodiversity (Laurance et al., 2014). For this reason, it is neces-
sary to generate measures that mitigate the adverse effects of linear 
infrastructure on ecosystems and wildlife (Clevenger and Waltho, 2005). 

One of the primary purposes of conservation researchers, road 
ecologists, and road infrastructure managers is identifying sites with the 
highest risk of WVC. These sites are identified through diagnostic 
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studies, which require plenty of resources, specialized human talent, and 
long periods to obtain systematic and significant information. Based on 
the information collected, spatial analyses are generated that allow 
mitigation and prevention measures for the WVC (Crawford et al., 2014; 
Cureton and Deaton, 2012; Danks and Porter, 2010; Forman et al., 2003; 
Girardet et al., 2015; Gunson et al., 2011; Madsen et al., 2002). 

One of the most promising areas to be applied to this phenomenon is 
Artificial Intelligence: a set of learning techniques and algorithms that 
seek to give computer systems the ability to learn. Just as we humans 
learn from our experiences and the world, systems ‘learn’ from the data 
provided to them, allowing them to generate predictions, analysis, or 
even decision-making (Müller and Guido, 2016). In recent years there 
has been an exponential increase in the generation of research that 
makes use of learning algorithms as an input for the prediction of 
various spatial phenomena (Amiri et al., 2019; Bui et al., 2016; Bui et al., 
2017; Bui et al., 2019; Durduran, 2010; Ghorbani et al., 2019; Har-
irforoush and Bellalite, 2019; Jaafari et al., 2019). 

Despite this, few studies use machine learning algorithms to predict 
the segments with the most significant accumulation of WVC (Pagany, 
2020). Most of these studies use generalized linear models, regression 
techniques, and some classification algorithms. For instance, in (Pagany 
et al., 2020), Gaussian Naive Bayes, stochastic gradient descent and 
random forest with random cross-validation are used to predict WVC 
data. (Nguyen et al., 2021) used a logistic generalized linear model and 
random forest to predict WVC in Southern Tasmania. Moreover, (Serrón 
et al., 2020) used a random forest to predict and analyze WVC data in 
Uruguay. However, the previous works are oriented to predict WVC 
data, not the significant hotspots. Additionally, the used cross-validation 
methodology in these previous studies did not address the problems 
presented by data’s spatial correlation, resulting in high performances 
due to overfitting (Schratz et al., 2019). 

This research aims to propose a methodology to predict the sites of 
accumulation of WVC in eastern Antioquia, Colombia. Our methodology 
uses artificial intelligence algorithms, geographic information systems - 
GIS, and multispectral image processing. We performed group-based 
cross-validation to consider the spatial bias of the data. This research 
differs from other works by its use of classification algorithms, which 
road ecology has not sufficiently explored despite proven effective in 
other spatial-based researches e.g. (Bui et al., 2019). It also applies a 
novel validation technique for WVC data prediction, considering the 
spatial bias introduced by the spatial correlation, which to the best of 
our knowledge, has not been explored before. Finally, this paper shows 
an easy, replicable, and scalable methodology that reduces the costs and 
time required to identify the most significant WVC Hotspots. We 
describe how to learn and then transfer a known pattern to an unknown 
area using spatial information obtained from official maps or satellite 
imagery, potentially reducing the cost of identifying WVC in a non- 
studied road up to 95%. 

2. Methods 

Fig. 1 shows a flowchart for the methodology proposed in this work, 
consisting of a recollection of WVC reports, a geostatistical analysis of 
the point pattern, a hotspot identification stage, a characterization of the 
most relevant spatial descriptors of the hotspots, followed by a machine 
learning algorithm phase, a cross-validation algorithm, and a transfer 
learning stage. Each of these stages are explained in the following 
section. 

2.1. Study area 

The study area is a 71 km road network, with a high flow of vehicles, 
connecting the municipalities of Envigado, La Ceja, El Carmen de 
Viboral, and Rionegro in the San Nicolás Valley (Colombia). This region 
presents temperatures between 9 and 24 ◦C. The area has secondary 
vegetation cover, agricultural mosaics, pastures, forest plantations, and 
open forests. Thus, it is an area with a high presence of fauna. The most 
common animal species in the area are the Red-tailed Squirrel (Noto-
sciurus granatensis), the Central American Agouti (Dasyprocta punctata), 
the Common Possum (Didelphis marsupialis), the Paca (Cuniculus paca), 
and the Mountain Dog (Potos flavus) (García-Morera and Giraldo-Iral, 
2018). 

2.2. WVC and spatial information recollection 

This paper used WVC reports from the Recosfa App dataset 
(RECOSFA, 2019). Each report includes the spatial coordinates (latitude, 
longitude), photographs, the animal class, and the species (when 
possible to identify). The data is obtained from car surveys carried out by 
ITM researchers and reports from several road administrators between 
2016 and 2020 following the recommendations outlined by (Smith and 
van der Ree, 2015). For August 2020, the Recosfa App database included 
6204 WVC reports in Colombia and 837 in the Study Area, consisting of 
527 mammals, 178 birds, 82 amphibians, 47 reptiles, and 3 reports 
whose class could not be identified. Likewise, Didelphidae was the most 
reported with 335 records, followed by Rhinella marina and Notosciurus 
granatensis. Fig. 2 shows the study area and the division segments. 
Table 1 summarizes the number of WVC reports contained in each 
segment. 

We used several environmental and geographic information data to 
characterize the WVC phenomenon. Table 2 summarizes the informa-
tion layers, the year of construction, source, and derived spatial infor-
mation. We used road and river layers collected in 2017 (DANE, 2017), a 
digital elevation map, tree cover loss data, and land cover maps. Using 
this data, we obtained the distance to roads and rivers, a watershed 
model, the distance to cover loss, and the nearest forest. Figs. 3 and 4 
show some of the spatial information maps used in this study. 

Additionally, a Landsat 8 image composite was derived from data 
collected between 2014 and 2018; the composition was obtained using 

Fig. 1. Proposed methodology to predict WVC hotspots using machine learning algorithms.  
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Google Earth Engine Simple composite algorithm for Landsat raw im-
agery with a maximum of 5% of cloud score. This algorithm applies 
standard top of atmosphere (TOA) calibration and then assigns a cloud 
score to each pixel using the SimpleLandsatCloudScore algorithm. It 
selects the lowest possible range of cloud scores at each point and then 
computes per-band percentile values from the accepted pixels. 

Several spectral indices were derived from the composite, such as 
Normalized Vegetation Index - NDVI (Jackson, 1983), Green Normal-
ized Vegetation Index - GNDVI (Gitelson et al., 1996), Enhanced Vege-
tation Index - EVI, Advanced Vegetation Index - AVI, Soil-adjusted 
vegetation index - SAVI, Normalized Difference Moisture Index - NDMI, 
Moister Stress Index - MSI, Green Cover index - GCI, Bare Soil Index - BSI 
and Normalized Burn Rate Index - NBRI (Baynes, 2004). 

To model animal movement, a least-cost of movement map was 
generated for the study area. This model was made using the Linkage 
Mapper toolbox for Arcmap 10.6 (McRae et al., 2008). A reclassification 

of the GIS layers according to the ethology of the target species: crab- 
eating fox (Cerdocyon thous) was made due to his constant presence in 
the study area (see Supplementary material) as suggested by (Beier 
et al., 2011), in which each of the map’s pixels acts as a resistance 
network in which the path with the least voltage loss will be found 
(Dickson et al., 2018). 

The shows some of the spatial information maps collected including 
vegetation indexes such as NDVI, a Landsat 8 cloudless composite 
image, a digital elevation map for the study area, WVC reports collected, 
distance to rivers, distance to forest, distance to tree loss, and distance to 
roads among others. 

2.3. Geostatistical analysis and WVC hotspot identification 

Based on the WVC reports, we performed a pattern analysis to 
identify areas with statistically significant WVC point accumulations. A 
K Ripley analysis (Clevenger et al., 2003) was implemented using the 
Siriema Software (Coelho et al., 2014), with an initial observation dis-
tance of 100 m and increments of 100 m until convergence. Clusters 
were generated on the spatial scale identified by Moran autocorrelation 
test (Eshel, 2011). 

Finally, a 2D hotspot analysis was also performed using the Siriema 
Software. For this, the significant distance band identified by the spatial 
autocorrelation analysis and a division of 1000 equidistant segments in 
the study area were used. A point distribution was obtained with its 
corresponding segment accumulation values - HS, and the upper and 
lower confidence limits (UCL and LCL, respectively). We generated two 
classes: class 1 corresponds to road segments whose HS exceeds UCL, 
and class 0 includes the remaining segments, corresponding to the 
hotspot and not-hotspot segments. 

2.4. Feature sampling and selection 

We associated each hotspot and not-hotspot segments with the in-
formation layers and derived variables. This representation space con-
tains only spatial information without WVC data, allowing a 
classification based on the area’s features and not on the distribution of 
WVC points. The feature dataset contained each segment’s mean feature 
value extracted at different circular buffer radios: 90 m, 150 m, and 300 
m through focal statistics as shown by (Ha and Shilling, 2018). A matrix 
of 3000 track segments and 96 features were created, corresponding to 
the spatial descriptors of the segments proposed in Table 2 (see Sup-
plementary material). 

Then, feature selection techniques such as Mutual Information (MI) 
(Qian et al., 2020), Chi-square (Bahassine et al., 2020), and ANOVA F- 
score (Güneş et al., 2010) were applied to identify the most relevant 
information for hotspot identification. A random forest classifier was 
used to select the best subset of features, comparing the obtained area 
under the curve (AUC) of the receiver operating characteristic (ROC). 
The classifier was iteratively trained with a subset of features to select 
the optimum number of features. 

A validation process was designed to reduce the effects of spatial bias 
caused by the proximity between segments. We evaluated the model’s 
predictive capacity using group-wise cross-validation techniques 
(Pedregosa et al., 2011), using 4 training and validation folds. Each fold 
has 9 training and 3 testing segments. These segments are exchanged 
until each of them, at least once, is part of the testing set. 

2.5. Classification comparison and selection 

Since there is a higher number of non-hotspot segments, we applied 
balance techniques such as adaptive synthetic sampling - ADASYN (He 
et al., 2008), minority synthetic oversampling technique - SMOTE 
(Chawla et al., 2002), KMeans SMOTE (Douzas et al., 2018), Borderline 
SMOTE and SVM SMOTE (Nguyen et al., 2011). For the last one, it was 
necessary to estimate the SVM parameters embedded in the algorithm 

Fig. 2. Map of the study area: San Nicolás Valley (Colombia). The colored 
segments correspond to the division of the study area on 4 linear segments. 

Table 1 
Number of WVC reports by each segment.  

Road segment Number of reports 

1 261 
2 199 
3 196 
4 181  

Table 2 
Spatial Information recollected and derived spatial information.  

Layer Year Source Derived layers 

Roads 2017 (DANE, 2017) Euclidean distance 
Rivers 2017 (DANE, 2017) Euclidean distance 
DEM 2000 (USGS, 2000) Altitude, Watershed 

model 
Tree cover 2017 (Hansen et al., 

2013) 
Distance to tree loss 

Forest/no forest 2016 (IDEAM, 2016) Distance to forest 
Landsat 8 

composite 
2014–2018 (USGS, 2013) Bands 1–11, Spectral 

indices 
Land cover 2017 (IDEAM, 2017) Land cover classification  
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using a GridSearchCV approach (Pedregosa et al., 2011). 
We compared four supervised classifiers: K - Nearest Neighbours - 

KNN (Guo et al., 2003), Support Vector Machines - SVM (Cortes and 
Vapnik, 1995), Artificial Neural Networks - ANN (Haykin, 1998), and 
Random Forests - RF (Breiman, 2001). The algorithms were imple-
mented in Python using scikit-learn classification tools (Pedregosa et al., 
2011). These methods were selected for their use in similar applications 
to predict wildlife hotspots (Bui et al., 2019; Peng et al., 2014). To 
identify the best algorithm to predict WVC hotspots, a Friedman’s non- 
parametric statistical test and an LSD multiple comparison test was 
made by computing the AUC-ROC, confusion matrices, and Kappa sta-
tistics yielded by each algorithm (Riffenburgh, 2006). 

The parameters of each classifier were optimized using grid search 
for KNN, SVM, and ANN. The number of neighbours of KNN was 
established for values between 1 and 300. For SVM, the grid search 
determined the amplitude and standard deviation parameters, with 
values between 0.0625 and 8 and between 0.0005 and 100, respectively. 
For ANN, we searched for the best number of neurons per layer and 
activation function. In the RF algorithm, a genetic algorithm - GA was 
used for optimization (Olson et al., 2016). 

2.6. Transfer learning 

Although there is a methodology popularly known as transfer 
learning, which consists of transferring a previously trained neural 
network architecture with images of a different element to the one to be 
classified or detected, this is not the method used in this research (Morid 
et al., 2021). Here, transfer learning is understood as the use of a trained 
classification model readjusted with new data. The refinement is per-
formed with few new samples. Then, the updated classification model is 
applied to a validation set. 

To validate the selected algorithm, a K fold approach was used to 
partition the cross-validation segments into training and transfer blocks 
with a ratio of 3:1 respectively, which at the end of each evaluation will 
change until each segment has been at least one time part of the test set. 
To evaluate the impact of different percentages of data added to the 
training dataset, different percentages of aggregated data were tested to 
readjust the model, determining the ideal percentage needed to make 
predictions in areas with minor to none WVC data. 

Fig. 3. Spatial information maps for Study Area. A) NDVI index, B) Landsat 8 composite image, C) Altitude, D) WVC reports.  
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3. Results 

3.1. Hotspot prediction 

Fig. 5 shows K Ripley statistics for each segment of the study area. 
We identified significant clustering of points by comparing the observed 
pattern L(r) with the upper (ULC) and lower (LCL) confidence limits of a 
random distribution on the evaluated segment. Significant clusters were 
identified between 0.1 km(r) and 16 km(r) in segment 1, between 0.1 km 
(r) and 3.5 km(r) and between 6.8 km(r) and 10.4 km(r) in segment 2, 
between 0. 1 km(r) and 6.5 km(r) in segment 3, and between 0.1 km(r) 
and 3.7 km(r), between 5.1 km(r) and 5.3 km(r), and, between 5.5 km(r) 
and 6.5 km(r) in segment 4. 

Cluster groups were created to allow autocorrelation tests consid-
ering the point aggregation intensities, each cluster was made using a 
search radius of 300 m as shown as a significant band in all evaluated 
segments by the K Ripley analysis. Spatial autocorrelation analysis of the 
cluster group distribution were performed, identifying the distance 
bands of 1.3 km and 269 m with a significant clustering pattern, with a 
positive spatial autocorrelation (I = 0. 18, I = 0.064) for the segments 1 

and 2, respectively. Likewise, it was evident that the 1.3 km distance 
band had significant clusters with a positive spatial autocorrelation (I =
0.47, I = 0.21) for segments 3 and 4, respectively. 

Finally, Fig. 6 shows the intensity of the hotspots identified by the 2D 
hotspot analysis by a gradient color. In segment 1, significant clusters 
were identified between kilometers 7.5 and 12.65, 13.5, 14, and be-
tween kilometers 17.5 and 18.9. In the segment 2, significant grouping 
patterns were identified between kilometers 0.5 to 0.6, 2.1 to 3.6, and 
kilometers 5.6, 7.6, 8, and 11. For segment 3, kilometers 2 and 7 were 
identified as significant clusters. Finally, in segment 4, kilometers 0 and 
0.5, and kilometers 1 to 6 were identified as significant clusters. 

Because of the nature of the data, an imbalance was detected be-
tween the labels no-hotspot and hotspot with a 4:1 ratio, respectively, 
requiring the application of techniques that allow not only a synthetic 
balance of the feature matrix but also an adequate measurement of the 
performance of the machine learning algorithms (Hoens and Chawla, 
2013; Japkowicz, 2013). The imbalance is caused by WVC data’s nature, 
where WVC reports are expected to be grouped in the routes of con-
nectivity severed by the construction of the road as suggested by (Mader, 
1984). Due to the spatial dependence between the collected data, a 

Fig. 4. Spatial information maps for Study Area. A) Distance to rivers, B) Distance to the forest, C) Distance to tree loss D) Distance to roads.  
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validation algorithm was designed with 12 sub-segments, each one with 
250 points distributed sequentially in the training area. Fig. 7 shows the 
sub-segment distribution in the study area. 

The feature selection was carried out using the univariate selection 
method of the best K characteristics using Chi-square as the information 
criterion (Bahassine et al., 2020), Mutual Information (MI) (Qian et al., 

2020), and the F value of ANOVA (F-ANOVA) (Güneş et al., 2010). The 
area under the ROC curve of a non-optimized Random Forest (RF) 
classifier was evaluated with a different number of features to select the 
number that would yield the best classification result. Fig. 8 shows the 

Fig. 5. K Ripley statistics for the study area, significant clusters are identified when the observed pattern L(r) surpass the upper confidence limit (UCL) of a random 
distribution for the same road segment. 

Fig. 6. Hotspots identified in the study area.  

Fig. 7. Division of the training segments (1,2&3) in 12 subsegments.  
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results of each iteration of the algorithm with each of the univariate 
selection method (Chi2, F-ANOVA, and MI). We can note that the RF 
algorithm trained with a 17 subset of features identified by the MI se-
lection was the optimal configuration, yielding the highest value (AUC- 
ROC = 0.67) among the tested features subsets. 

Table 3 summarize the selected subset of features identified by the 
MI method, the buffer radius in which the feature was sampled, the 
amount of information provided by each feature in bits, and its contri-
bution to the AUC-ROC. We can see that the same variable, e.g. Landsat 
Band 11 (TIRS 2), provides a different amount of information when the 
mean value of the raster is sampled at different buffer distances, addi-
tionally can be seen that the feature Distance to corridor sampled at 300 
m yielded the most significant contribution to the RF algorithm. 

With the identified features by the MI, custom-made machine 

learning algorithms: RF, SVM, KNN, and Neural Networks were tested 
using scikit-learn classification tools (Pedregosa et al., 2011). Table 4 
shows the results of each of the optimized algorithms, the balance 
techniques employed, the F1-score, Accuracy, Kappa, and AUC-ROC 
performance metrics. In Table 4, we can observe the best results in 
terms of AUC and Kappa for each algorithm with its respective balance 
method: ANN BORDERLINE SMOTE (0.63 ± 0.11, 0.1586), RF ADASYN 
(0.78 ± 0.12, 0.3429), SVM KMEANS SMOTE (0.59 ± 0.17, 0.1372) and 
KNN BORDERLINE SMOTE (0.59 ± 0.08, 0.165). 

Friedman non-parametric statistical test and the LSD multiple com-
parison test algorithm were performed using MATLAB software for all 
the classification algorithms. Table 5 shows the results obtained for the 
multiple comparison test between RF ADASYN and the other algorithms, 
showing significant statistical differences (90% C.I.) regarding the 
compared classifiers except with itself and KNN SMOTE, KNN KMEANS, 
and ANN BORDERLINE. Thus, the RF algorithm, which also has the 
highest performance of all the compared algorithms, was chosen 
together with the ADASYN balance method to be used to predict the 
WVC phenomenon with transfer learning. 

Fig. 8. Grid search of the ideal number of features selected by each of the 
univariate selectors. 

Table 3 
Optimal subset of features identified by the MI univariate feature selection 
method.  

Feature Mean sampling 
buffer 

Amount of 
information (bits) 

Feature 
contribution 

Landsat Band 11 
(TIRS 2) 

300 m 0.228374 0.073298 

Altitude 300 m 0.210617 0.066922 
Distance to forest 300 m 0.197259 0.067143 
Landsat Band 10 

(TIRS 1) 
300 m 0.195181 0.045025 

Distance to 
corridor 

300 m 0.174479 0.095792 

Resistance 150 m 0.172832 0.030807 
Resistance 300 m 0.169023 0.043452 
Altitude 150 m 0.167544 0.074664 
Distance to forest 150 m 0.167544 0.055238 
Distance to 

corridor 
150 m 0.159924 0.074783 

Distance to 
corridor 

90 m 0.152511 0.070427 

Distance to forest 90 m 0.152351 0.059134 
Landsat Band 9 

(Cirrus) 
300 m 0.150367 0.053969 

Landsat Band 11 
(TIRS 2) 

150 m 0.146185 0.044474 

Landsat NBRI 
index 

300 m 0.144953 0.042359 

Altitude 90 m 0.128334 0.039412 
Movement cost 300 m 0.122733 0.063102  

Table 4 
Performance comparison of all the machine learning algorithms with balance 
methods.  

Classification 
method 

Resampling 
method 

F1- 
Score 

Precission Kappa AUC- 
ROC 

ANN SVM SMOTE 0.61394 0.7068 0.0368 0.54 
± 0.17 

SMOTE 0.6661 0.7136 0.0508 0.57 
± 0.16 

KMEANS 
SMOTE 

0.6917 0.7392 0.1174 0.60 
± 0.16 

BORDERLINE 
SMOTE 

0.7006 0.7574 0.1586 0.63 
± 
0.11 

ADASYN 0.6755 0.7428 0.1235 0.63 
± 0.15 

RF SVM SMOTE 0.7332 0.8426 0.2355 0.71 
± 0.16 

SMOTE 0.7322 0.8442 0.2572 0.75 
± 0.12 

KMEANS 
SMOTE 

0.6852 0.8378 0.2055 0.70 
± 0.11 

BORDERLINE 
SMOTE 

0.7626 0.8628 0.3151 0.72 
± 0.14 

ADASYN 0.7736 0.8624 0.3429 0.78 
± 
0.12 

SVM SVM SMOTE 0.7169 0.8448 0.0891 0.48 
± 0.18 

SMOTE 0.7169 0.8495 0.104 0.54 
± 0.14 

KMEANS 
SMOTE 

0.7556 0.8343 0.1372 0.59 
± 
0.17 

BORDERLINE 
SMOTE 

0.7277 0.8032 0.1166 0.46 
± 0.17 

ADASYN 0.764 0.7844 0.1252 0.47 
± 0.17 

KNN SVM SMOTE 0.701 0.777 0.152 0.57 
± 0.1 

SMOTE 0.6997 0.7696 0.1679 0.59 
± 0.1 

KMEANS 
SMOTE 

0.7096 0.8251 0.1709 0.61 
± 0.1 

BORDERLINE 
SMOTE 

0.688 0.7762 0.165 0.59 
± 
0.08 

ADASYN 0.6948 0.7763 0.1674 0.56 
± 0.09 

Best result for each classification method and significative p-values (p<0.1) are 
indicated in bold 
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3.2. Transfer learning 

To validate the methodology for the prediction of WVC hotspots, a 
transfer learning methodology was implemented using the RF ADASYN 
algorithm selected in the previous section. The algorithm was fitted with 
the spatial information of the remaining segments, excluding the one in 
which the prediction was to be made. Additionally, to evaluate the 
incidence of retraining data on the model’s performance, different 
percentages of the total length of the segment to be predicted were 
evaluated. Fig. 9 shows the ROC graphs with different percentages of the 
spatial information from the prediction segment used to retrain the al-
gorithm, 0%, 1%, 5%, 10%, 15%, and 20%. We can note the presence of 
overfitting phenomenon starting at 10% of the total data used to retrain 
the algorithm, being clear due to the saturation of the model’s 
performance. 

Finally, Fig. 10 presents a prediction map for all the segments of the 
study area using the transfer learning approach. Each prediction was 
made using cross-validation methodology with 5% of retraining data. In 
it, we can see that the false positive predictions (in which the algorithm 
mistakenly classifies a segment as WVC hotspot) are grouped especially 
at the edges of the hotspot areas due to the similarities in this “buffer” 
zone, in which the changes of the spatial features are barely perceptible. 

4. Analysis of results and discussion 

Regarding the proposed features, the methodology used in this 
investigation was outlined by (Amiri et al., 2019; Ghorbani et al., 2019; 
Jaafari et al., 2019; Kantola et al., 2019; Thach et al., 2018; Wang et al., 
2019) among others, who have used spatial variables as input for the 
prediction of different spatial phenomena. Besides, an attempt was made 
to extend the feature database by using the Landsat satellite’s spectral 
bands to obtain as much information as possible about the vegetation 
coverage, which is similar to the use made by (Ascensão et al., 2019). 
The characteristics proposed in this project are based on the previous 
works presented by (Ascensão et al., 2019; Fabrizio et al., 2019; Gon-
çalves et al., 2018; Ha and Shilling, 2018; Kantola et al., 2019) among 
others. 

In the hotspot identification, segment 1 was identified as the road 
segment with the most reports: 281. It is a consequence of the proximity 
of segment 1 to the Rio Nare Reserve, the San Miguel and Cerros de San 
Nicolás protected areas, the primary ecological nodes in the area in 
terms of area and integrity. On the other hand, segment 4 has a greater 

distance to protected areas and forests, reducing the roads’ impact on 
these protected ecosystems (Forman et al., 2003; van der Ree et al., 
2015a, 2015b). 

K Ripley analysis and spatial autocorrelation analysis allow us to 
determine that the phenomenon of WVC in the study area was not 
randomly mediated, consistent with the work made by (Clevenger et al., 
2003). Additionally, it was possible to determine that the hotspots of 
fauna roadkill are related to their neighbours in terms of point accu-
mulation, being more similar to their neighbours than to distant points 
of aggregation, as described by (Getis and Ord, 2010; Griffith, 2015; Ord 
and Getis, 2010). 

For the feature selection, the Mutual Information (MI) metric has 
proven to be a method with promising results allowing the selection of 
the features with the highest amount of relevant information for the 
ranking algorithm’s output (Zhou et al., 2020). In this study, the selected 
features are related to the land use around the events, the distance to 
forest cover, the distance to water sources, among other features as 
shown by (Ascensão et al., 2019; Fabrizio et al., 2019; Gonçalves et al., 
2018; Ha and Shilling, 2018; Kantola et al., 2019), related to ecosystem 
quality (Hansen et al., 2013). Also, the selection of features at different 
scales was necessary, as shown by (Ha and Shilling, 2018), obtaining 
different contribution results to the prediction with the same feature 
measured at different scales. 

The features selected: Distance to forest 300 m, Distance to biological 
corridor 300 m, Resistance 150 m, Resistance 300 m, distance to forest 
150 m, distance to biological corridor 150 m, distance to biological 
corridor 90 m, distance to forest 90 m, Movement cost 300 m, are 
directly related to the ecological connectivity, which is consistent with 
(Mader, 1984; Mansergh and Scotts, 1989). The features: Landsat band 
11,300 m, Landsat band 10,300 m, Landsat band 9300 m, Landsat band 
11,150 m, and NBRI_300 m capture the temperature of the ground, 
which decreases in the presence of vegetation, allowing the algorithm 
the quantitative observation of the thermal regulation provided by the 
forests and plant cover (Shen et al., 2019), providing more attractive 
areas for animal movement as described by (Maffei and Andrew, 2003). 

This work used a group-sensitive cross-validation, thus ensuring that 
the results do not contain biases related to the high spatial correlation 
between neighboring segments, allowing the model to be evaluated in 
completely unknown scenarios. According to the current knowledge of 
the authors, group-sensitive cross-validation has not been used to vali-
date predictive models of WVC in the past. However, group validation is 
a technique usually used to validate spatial predictive models, as re-
ported by (Kajornrit and Wong, 2013). 

As it is known, the success in the implementation of a machine 
learning algorithm depends on the choice of appropriate parameters 
when training a model (Smets et al., 2007). Although each method’s 
optimization method was selected according to the complexity of the 
optimization problem, the methods described are of the meta-heuristic 
type (Kurniasih et al., 2019). In the nearest neighbour algorithm 
(KNN), there is only one parameter to optimize, so it was decided to use 
the GridSearch method. However, there are faster methods such as those 
proposed by (Fukunaga and Narendra, 1975), (Moreno-Seco et al., 
2002), (Baek and Sung, 2000). Due to the low amount of data in the 
training phase and the fact that the algorithm execution time was less 
than 5 min, other algorithms that could reduce the training time were 
not considered necessary. 

Likewise, in the case of the Vector Support Machine (SVM) algo-
rithm, although there is a great variety of possible kernels to be used in 
the training stage, it was decided to use the radial-based kernel due to 
the positive results it has shown in different applications such as those 
presented by (Duan and Liu, 2012), (Ye and Li, 2012), among others. 
Besides, limiting the optimization problem to a single Kernel allowed to 
focus on finding the C and Gamma values employing specific search 
methods with cross-validation methods, guaranteeing a selection of 
parameters adjusted to different data sets, avoiding overtraining the 
model (Wang et al., 2012). 

Table 5 
Multiple comparison test between the RF ADASYN algorithm and the other 
tested algorithms.  

Selected algorithm Compared algorithm p-Value  

SVM_SVMSMOTE 0.0027  
ANN_SVMSMOTE 0.0065  
RF_SVMSMOTE 0.8576  
KNN_SVMSMOTE 0.0363  
SVM_SMOTE 0.0092  
ANN_SMOTE 0.0120  
RF_SMOTE 0.8109  
KNN_SMOTE 0.1000  
SVM_KMEANS 0.0130 

RF ADASYN ANN_KMEANS 0.0727  
RF_KMEANS 0.3696  
KNN_KMEANS 0.1063  
SVM_BORDERLINE 0.0142  
ANN_BORDERLINE 0.1882  
RF_BORDERLINE 0.7649  
KNN_BORDERLINE 0.0595  
SVM ADASYN 0.0313  
ANN ADASYN 0.0595  
KNN ADASYN 0.0828 

Best result for each classification method and significative p-values (p<0.1) are 
indicated in bold 
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About artificial neural networks (ANN), the optimization of the 
network structure is a problem which, according to the authors’ current 
understanding, does not yet have an optimum solution. Therefore, in 
this project, it was decided to carry out a GridSearch optimization of the 
network structure parameters utilizing multiple optimization algo-
rithms’ repetitions. Finally, the random forest algorithm was optimized 
using genetic algorithms. This algorithm allows the optimization of 
multiple parameters efficiently and effectively (Kramer, 2017). 

Regarding the comparison of the classifiers, the RF ADASYN algo-
rithm provided the best result (0.78 ± 12), improving the result ob-
tained by (Ascensão et al., 2019), being the precedent that most closely 
approximates the methodology applied in this research. However, 
comparing results of different methodologies applied in different study 

areas are particularly difficult. 
Finally, positive results were observed for all the methods imple-

mented. This type of methodologies has not been sufficiently explored 
for the WVC phenomenon, requiring a higher amount of research to 
improve the results present here, especially the neural networks, since 
they have proven to be especially effective in predicting different spatial 
phenomena with excellent results (Bui et al., 2016; Bui et al., 2017; Bui 
et al., 2019; Ghorbani et al., 2019; Jaafari et al., 2019). 

To validate the methodology for predicting hotspots for fauna from 
multispectral imagery and geographic information systems, we pro-
posed to adopt the Transfer Learning technique (He and Ma, 2013) used 
in neural networks to implement it in this particular classification 
problem. Different percentages of the track segments of the validation 

Fig. 9. AUC-ROC of the ADASYN RF classifier when subjected to different % of data aggregated to the training set. A) 0%, B) 1%, C) 5%, D) 10%, E), 15%, F) 20%.  
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section were used to train the model. In Fig. 9 can be seen that the results 
of the classifier are improved with a higher proportion of data from the 
validation section used during the training, obtaining values of AUC 
ROC from 0.64 ± 0.08, corresponding to the retrained classifier with 1% 
of the validation data, to 0.95 ± 0.04, corresponding to the retrained 
classifier with 20% of the validation data. 

We consider that the results using 5% retrain data show the most 
realistic approach to deploy this methodology in a real scenario, in 
which only 5% of the road would be needed to do a car survey to predict 
the 95% left with a good performance of the algorithm. However, this 
should be tested in other areas using a selected class or species data with 
a specific temporal window, tests we could not do due to the lack of 
enough information about a single species or class to identify the sig-
nificant WVC hotspots. 

5. Conclusions 

This research has developed a novel methodology for predicting the 
most significant accumulation of WVC on roads in Eastern Antioquia, 
based on artificial intelligence algorithms, geographic information sys-
tems, and multispectral image processing. This includes a character-
ization of the WVC hotspots based on multispectral images, a feature 
selection using univariate selection methods, a selection of the machine 
learning model with the best fit, and a transfer learning experiment in 
areas unknown to the model. Tests shown that the RF ADASYN algo-
rithm was the best performing algorithm (AUC-ROC = 0.78 ± 0.12) and 
(AUC-ROC = 0.87 ± 0.09) when retrained with 5% of the total length of 
the road to be predicted. 

The methodology used in this work has the potential to reduce the 
response times of the academy, control bodies, and road operators to the 
phenomenon of WVC, allowing the estimation of areas with potential 
hotspots to be validation by diagnostic studies that will identify and 
propose mitigation measures. Also, the constructed methodology seeks 
to fill a partial void of information about the application of classification 
models for the prediction of WVC hotspots. It also seeks to set a standard 
on how should this type of algorithms be validated, considering the 

spatial bias introduced by the spatial autocorrelation. 
This work shows a theoretical approach to the prediction of WVC 

hotspots in areas with few data collected. However, it is necessary to 
carry out field validation of the results obtained through this method-
ology, which is considered the future work of this project. Although this 
paper shows a better performance than the others present in the current 
state-of-the-art, it is essential to highlight that comparing methods in 
different areas and different data is demanding due to the different 
ecological settings and the differences between them of data 
recollection. 

Regarding using a composite Landsat 8 image, we clarify that the 
authors acknowledge that temporal vegetation changes and other 
detailed spatial changes are not visible with this approach. However, 
since the aim to include the Landsat image in this work is to give in-
formation about the presence/absence of vegetation and other objects 
near the roads, the methodology should not be considerably affected by 
this, specially considering that Colombia has two seasons, wet and dry. 
Future works are encouraged to develop models considering seasonality, 
and spatial changes, allowing to narrow down the WVC Hotspot for 
some particular species or season. 

Lastly, we note that this work has been done using all vertebrate 
animal class data. It was made to ensure a sufficient amount of data for 
the training stage. However, it would be ideal to recollect enough in-
formation on a single species to make a more precise WVC Hotspot 
identification because of the different behavior of even similar species. 
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patas negras, Cerdocyon thous, en un bosque seco. Mastozoología Neotropical. 
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